CHROM. 5370

RESPONSE PREDICTION OF THE THERMAL CONDUCTIVITY DETECTOR WITH LIGHT CARRIER GASES

EUGENE F. BARRY^{*} AND DOUGLAS M. ROSIE Department of Chemistry, University of Rhode Island, Kingston, R.I. (U.S.A.) (Received March 22nd, 1971)

SUMMARY

In gas chromatography the response of thermal conductivity detectors is dependent on the physical properties of the solute. This investigation determined that signal strengths represented as relative molar response factors can be calculated from the critical properties of both the chromatographic fraction and a carrier gas of low molecular weight. The approach suggested by LITTLEWOOD has been adopted and appropriately modified with the incorporation of a molecular weight term. The equation is applicable to both polar and non-polar compounds when helium or hydrogen are carrier gases. More significantly, the decrease in response with increased molecular symmetry for isomeric compounds is accurately predicted.

INTRODUCTION

Investigations¹⁻⁴ have confirmed that the signal strength arising from the presence of an eluted solute in a typical detector depends primarily on the nature of the solute. MESSNER *et al.*² reported that these relative molar response (RMR) factors were nearly a linear function of molecular weight within a homologous series and that the relative response of a branched hydrocarbon is less than the RMR of the normal (n-) isomer.

Several attempts have been made to calculate RMR factors theoretically. The path most frequently chosen utilizes an appropriate thermal conductivity mixture formula derived from the kinetic theory of gases. However, difficulties are encountered because thermal conductivities of the components in a gaseous binary mixture (eluted solute and carrier gas) are usually not additive. Furthermore the thermal conductivity of a mixture cannot be accurately determined in all cases by empirical equations.

HOFFMANN⁵ employed the thermal conductivity relationship proposed by WAS-SILJEWA⁶ and suggested that cell response is proportional to $(K_1 - K_{12})/K_{12}$. K_1 and K_{12} represent the thermal conductivity of the carrier gas and the mixture of solute and carrier gas, respectively. Similarly, LITTLEWOOD^{7,8}, LUY⁹ and MECKE AND ZIRKER¹⁰ proposed applications of the rigorous Chapman-Enskog theory^{11, 12}. Relevant to the present study is the extension of the Chapman-Enskog theory which was

* Present address: Department of Chemistry, Center of Materials Research, University of Maryland, College Park, Md., U.S.A.

adopted by LITTLEWOOD⁷. For the case where the mole fraction of one component is small (X_2) , LITTLEWOOD derived the following equation:

$$\frac{\mathbf{I}}{K_1} \frac{\mathrm{d}K_m}{\mathrm{d}X_2} \cong -2.30 \frac{\sigma_{12}^2}{\sigma^2}$$

where $\sigma_{12} = (\sigma_1 + \sigma_2)/2$. The molecular diameters of the carrier gas and solute are designated by σ_1 and σ_2 , respectively. There were four assumptions made by LITTLE-wood⁸ in the derivation of this equation.

(I) X_2 must be much less than I.

(2) The molecular weight of the solute (M_2) must be at least twenty times that of the carrier gas (M_1) .

(3) Organic molecules may be regarded as rigid spheres.

(4) The validity of the Chapman-Enskog theory is unaffected by the internal structure of the solute.

LITTLEWOOD's equation illustrates how the thermal conductivity of the carrier gas is altered by the presence of solute molecules. As the carrier gas is responsible for the heat dissipation in the sensing filament, the solute vapor interferes with this process to the extent of their total cross-sectional area, namely, $X_2\sigma_{12}^2$. The resulting decrease in thermal conductivity is indicated by the minus sign.

LITTLEWOOD⁸ stated that collision diameters for only a few compounds are available in the literature and also that the concept of a molecular diameter is not precise enough to make such values applicable in all circumstances. To alleviate these difficulties, he believed that it is feasible that the cross-sectional area of an organic molecule is approximately equal to the sum of the cross-sectional areas of its structural units. Analyzing the RMR data reported by ROSIE AND GROB¹, LITTLEWOOD found that the RMR factors of these compounds can be determined by addition of the RMR values assigned to each structural unit. However, this procedure is unsatisfactory for very symmetrical molecules, such as 3-ethylpentane.

Recently, NOVAK *et al.*¹³ chose to predict RMR values through consideration of both conductive and convective heat effects. With hydrogen as the carrier gas, the calculated response factors agreed well with the experimental data, but theoretical predictions were inadequate with nitrogen as carrier gas due to the non-linear response of the detector and peak distortion for both the internal standard and the compound under consideration.

CONCEPT OF A MOLECULAR DIAMETER

The thermal conductivity of a vapor is dependent upon its molecular weight and distance of closest approach in addition to other molecular properties. The distance of closest approach may be defined by the σ term in the Lennard-Jones (12 - 6) intermolecular potential energy function,

$$V(r) = 4e_0 \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

in which e_0 is the maximum energy of attraction of two colliding molecules. The param-

J. Chromalogr., 59 (1971) 269-279

 $(2)^{-1}$

eters σ and e_0 have been related to the viscosity and thermal conductivity of a gas near atmospheric pressure by the rigid Chapman-Enskog theory¹²:

$$N = \frac{0.002669 \, (MT)^{1/2}}{\sigma^2 \Omega^{(2,2)*}(T^*)} \qquad [cP] \qquad (3)$$
$$K = \frac{1.989 \times 10^{-4} (T/M)^{1/2}}{\sigma^2 \Omega^{(2,2)*}(T^*)} \qquad [cal/(cm) \, (sec) \, (^{\circ}K)] \qquad (4)$$

where M is the molecular weight of the gas and T is absolute temperature. The collision integral, $\Omega^{(2,2)*}(T^*)$, in which $T^* = kT/e_0$, is the resultant of a complex set of integrals after the potential function and temperature have been selected.

Since viscosity and thermal conductivity are a function of the Lennard-Jones parameters, these constants may be determined from the experimental measurements by choosing the set of σ and e_0 which fits the data most accurately. Complications

TABLE I

LENNARD-JONES PARAMETERS DETERMINED FROM VISCOSITY DATA

Compound	σ (Å)	e_0/k (°K)	Reference		
n-Butane	4.687	531	14		
	4.997	410	IS		
	5.339	310	16		
	5.869	208	17		
Benzene	5.349	412	14		
	5.443	387	16		
	5.628	412	17		
	5.270	440	18		

TABLE II

LENNARD-JONES PARAMETERS CALCULATED FROM VISCOSITY DATA FOR VARIOUS COMPOUNDS IN A HOMOLOGOUS SERIES

Compound	σ (Å)	e_0/k (°K)	Reference	
Methane	3.808	140	17	
Ethane	4.384	238	17	
Propane	5.240	206	17	
Butane	5.869	208	17	
Pentane	6.000	269	17	
Hexane	5.916	423	17	
Heptane		utilities.	no values reported	
Octane	7.407	333	17	
Nonanc	8.302	266	17	
Methanol	3.666	452	19	
Ethanol	4.370	415	19	
Dimethyl ether	4.204	412	19	
Diethyl ether	5.539	351	19	
Methyl acetate	5.054	417	10	
Ethyl acetate	5.163	531	19	

arise in this procedure as there are often multiple sets of $\sigma-e_0$ values which will reproduce the same viscosity data. Pairs of $\sigma-e_0$ values for *n*-butane and benzene are presented in Table I. In addition to the existence of several sets of parameters for a given compound, irregularities in reported values are common. The data in Table II show that the addition of a methylene group does not contribute a constant amount to either the collision diameter or the energy of interaction.

DETERMINATION OF COLLISION DIAMETERS

To eliminate irregular trends and multiple sets of $\sigma - e_0$ values, collision diameters have been calculated by the empirical expressions reported in the literature. In particular, TEE *et al.*¹⁶ found that the following relations accurately reproduced experimental viscosity data for fourteen non-polar, non-associated substances:

$$\sigma = 2.36 \ (T_c/P_c)^{1/3}$$

 $e_0/k = 0.774 T_c$

where T_c and P_c are the critical temperature (°K) and pressure (atm), respectively. Only the additional diameter expressions employed in the present investigation and the appropriate designation by which they will be subsequently referred to are presented in Table III.

TABLE III

COLLISION DIAMETER EXPRESSIONS

 T_c = critical temperature (°K); P_c = critical pressure (atm); V_c = critical volume (cm³/gmole); W = acentric factor.

Desig- nation	Expression	Reference
I	$\sigma = 2.3647 \ (T_c/P_c)^{1/3}$	16
2	$\sigma = (2.3454 + 0.2972 W) (T_c/P_c)^{1/3}$	16
3	$\sigma = 2.3442 \exp(0.1303 W) (T_c/P_c)^{1/3}$	16
4	$\sigma = (0.8123 + 0.1678 W) V_c^{1/3}$	16
5	$\sigma = 0.5894 V_c^{0.4006}$	20
6	$\sigma = (2.3551 - 0.0874 W) (T_c/P_c)^{1/3}$	16
7	$\sigma = 0.785 V c^{1/3}$	21
8	$\sigma = 0.561 V_c^{5/12}$	17
9	$\sigma = 0.618 V_c^{1/3} T_c^{1/18}$	17

The acentric factor, W, appearing in Table III was introduced by PITZER^{22,23} as a correlating parameter to characterize the acentricity of a molecule and is mathematically written as:

$$W = -\log P_{v \cdot p_r} - 1.00/T_{r=0.7}$$

where T_r and P_{v,p_r} are the reduced temperature and reduced vapor pressure, respectively. This technique of defining W results from the fact that it is sensitive to the value of the reduced vapor pressure near the normal boiling point. It has been found that for spherically symmetric species, such as argon, the value of P_{v,p_r} at a reduced

J. Chromatogr., 59 (1971) 269-279

(5)

(6)

(7)

TABLE IV

COLLISION DIAMETERS (Å) OF SELECTED COMPOUNDS

Compound	Collision diameter expression						
	ſ	3	8	·			
a-Dontano		- 8-	6 17				
M-Horano	5.71	5.05	6 - 8				
M-Hontano	6.47	6.66	6.00				
M-Octane	6 72	7.03	7 20				
#-Nonane	7.01	7.03	7:39				
<i>n</i> =1(ontric	7.04	1.28	/./+				
2.2-Dimethylbutane	5.94	6.10	6.51				
2-Methylpentane	6.02	6.20	6.57				
3-Methylpentane	6.00	6.17	6.55				
2-Methylhexane	6.36	6.59	7.00				
3-Methylhexane	6.31	6.53	6.94				
3-Ethylpentane	6.29	6.50	6.92				
2,2,3-Trimethylbutane	6.17	6.33	6.77				
Benzene	5.34	5.45	5.69				
Toluene	5.73	5.89	6.17				
o-Xylene	6.16	Ğ.35	6.59				
m-Xylene	6.17	6.38	6.64				
p-Xylene	6.22	б.41	6.65				
1,3,5-Trimethylbenzene	6.40	6.70	7.02				
Diethyl ether	5.57	5.60	5.82				
Acetone	5.23	5.40	5.22				
Methanol	1.42	4.71	4.00				
Ethanol	4.76	5.13	4.73				
Helium	3.14	3.11	3.01				
Hydrogen	3.25	3.22	3.19				

temperature equal to 0.7, is approximately 0.1; thus, W = 0. More significantly, the acentric factor is a convenient measure of the difference between a given molecule and an inert gas.

These diameter expressions generate a consistent set of diameters on which response prediction can be based. Diameters calculated by expressions 1, 3, and 8 are illustrated in Table IV for a few selected compounds. By inspection of Table IV it can be seen that collision diameters increase linearly with molecular weight for compounds belonging to a homologous series. Also, the diameter of a branched compound is smaller than that of the corresponding normal isomer, *e.g.*, *2*-methylpentane and hexane. Furthermore, a decrease in collision diameter is associated with increased molecular symmetry as a comparison of *2*-methylhexane, *3*-methylhexane, and *3*-ethylpentane indicates.

Critical constants and acentric factors for many organic compounds have been tabulated²¹. For compounds whose molecular constants are unavailable, their critical temperature and volume were estimated by LYDERSEN's method²⁵, the critical pressure by RIEDEL's procedure²⁶ and the acentric factor by the technique proposed by EDMISTER²⁷.

FORMULATION OF AN RMR EXPRESSION

When helium and hydrogen are employed as carrier gases, response behavior for compounds of vastly different functionalities can be predicted very well by the following equation:

$$\operatorname{RMR}_{i} = \left[\frac{\frac{\sigma_{i} + \sigma_{1}}{\sigma_{1}}}{\frac{\sigma_{\phi} + \sigma_{1}}{\sigma_{1}}}\right]^{2} \left[\frac{M_{i} - M_{1}}{M_{\phi} - M_{1}}\right]^{1/4} \times 100$$
(8)

The subscripts *i*, *I*, and ϕ refer to the solute under consideration, the carrier gas, and benzene (the internal standard), respectively. The first bracketed term in the expression has been proposed by LITTLEWOOD⁷, whereas the second term was incorporated in the present study to explain the increase in response with a corresponding increase in molecular weight. The factor of 100 represents the response of benzene, arbitrarily assigned a value of 100 response units per mole. In the calculation of an RMR value, the collision diameters of the substances indicated in the above equation were computed from the same diameter expression.

EXPERIMENTAL

Although this investigation was not designed to be experimentally oriented, the RMR of selected compounds were measured with helium as a carrier gas. Hydrogen was not employed as a carrier gas with the thermal conductivity detector.

Apparatus

The injection port and column were located in a Wilkens aerograph Model 600-B. The detector oven connected externally to the column exit was a Research Specialties Model 1601-2 equipped with a proportioning temperature controller capable of maintaining a temperature to $\pm 0.1^{\circ}$. The column exit and the thermal conductivity cell were connected by stainless steel tubing tightly wrapped in a Briskeat heating tape. The temperature of the heating tape was controlled by a Variac autotransformer and maintained at 100°. Two partitioning columns were used: (I) a 6 ft. \times I/8 in. O.D. stainless steel column containing 20% dinonyl phthalate on 60-80 mesh Chromosorb P; (2) a 6 ft. \times I/4 in. O.D. aluminum tubing containing 5.5% Carbowax 20M on Fluoropak 80.

A Gow-Mac Model 9677 thermal conductivity detector was operated at 100° and with a bridge current of 10 mA supplied by a Gow-Mac power unit Model 9999-D1616. The detector elements were matched glass bead thermistors having a resistance (cold) of 8000 Ω . The flow rate of helium was controlled at 37 ml/min by a rotameter (Matheson Company). Peak areas were measured by a Nester Faust Summatic 1501 digital electronic integrator and the chromatographic signals were observed on a Leeds and Northrup Speedomax H recorder with a 0-1 mV range and a chart speed of 30 in./h. Injected sample size was less than 1 μ l. The selected compounds were obtained from Matheson, Coleman and Bell and their purity was greater than 99 mole %.

274

Each compound was mixed with a known weight of benzene or toluene from which the mole % of each component could be calculated. Each mixture was chromatographed a minimum of three times and two mixtures were prepared for each compound.

PREDICTED RMR DATA WITH HELIUM AS CARRIER GAS

The predicted response factors of 68 compounds have been calculated by eqn. 8 and are presented in Table V as a function of the particular collision diameter expression employed in the calculations. Included for comparison are the experimental RMR factors reported by MESSNER *et al.*². The experimental RMR data in parentheses were determined in the present investigation. Several conclusions may be drawn from the inspection of Table V. The predicted RMR values reflect the fact that relative

TABLE V

PREDICTED RMR FACTORS WITH HELIUM AS CARRIER GAS

Compound	RMR	RMR predicted								
	experimental	1 ^b	2	3	4	5	6	7	8	9
Pentanc	105 (106)	107	107	107	107	108	106	106	108	105
Hexane	123 (122)	121	123	123	122	123	120	119	125	120
Heptane	143 (136)	135	139	139	137	139	134	132	141	134
Octane	160 (151)	149	155	155	153	155	148	145	157	148
Nonane	177 (164)	164	171	171	167	170	162	157	I73	162
2.2-Dimethylbutane	116	118	119	119	119	122	117	118	123	118
2, 3-Dimethylbutane	116	118	119	119	119	122	118	117	123	118
2-Methylpentane	120	120	121	122	122	123	119	119	I 2.4	119
3-Methylpentane	119	119	121	121	121	123	119	119	124	119
2,2-Dimethylpentane	133	130	132	132	132	r 35	130	129	137	130
2, 3-Dimethylpentane	135	130	133	133	132	135	130	129	137	131
2,4-Dimethylpentane	129	132	135	135	135	138	132	131	140	133
2-Methylhexane	136	134	137	137	137	139	133	132	141	134
3-Methylhexane	133	132	135	135	135	138	132	131	I 39	133
3-Ethvlpentane	131	132	134	135	134	137	131	130	139	132
2,2,3-Trimethylbutane	129	129	130	130	129	133	128	127	135	129
2,2,4-Trimethylpentane	147	144	147	147	148	154	144	144	157	147
Cyclopentane	97	97	97	97	97	97	97	97	97	97
Methylcyclopentane	115	111	112	[[2	112	TI 4	III	III	II4	112
Ethylcyclopentane	126	125	127	127	126	129	125	124	130	126
Cyclohexane	114 (110)	110	110	110	109	III	110	109	I I 2	110
Methylcyclohexane	120	124	125	125	121	123	124	119	12.4	121
Ethylene	48	56	55	55	54	53	57	56	52	52
Propylene	63	73	72	72	72	7 I.	73	73	70	70
Isobutylene	82	88	88	88	87	87	88	88	87	86
I-Butene	81	88	88	88	88	88	88	89	88	86
cis-2-Butene	87	89	90	90	89	87	89	88	87	86
trans-2-Butene	85	87	88	88	89	88	87	89	88	87
1.3-Butadiene	80	85	85	85	84	83	85	85	83	83
Benzene	100	100	100	100	100	100	100	100	100	100
Toluenen	116 (114)	114	115	115	115	116	114	113	116	115
o-Xylene ^a	130 (124)	130	132	132	129	130	129	126	132	129
m-Xylene ^a	131 (128)	130	133	133	131	132	130	127	133	129
p-Nylene ^a	131	132	134	134	130	132	131	127	133	130
Ethylbenzene ^a	129	127	129	130	130	131	126	126	133	129

(continued on p. 276)

TABLE V (continued)

Compound	RMR	RMR predicted								
1. 	experimental	Ip	2	3	4	5	6	7	8	9
Propylbenzenea	145	143	147	147	145	148	I42	I 10	150	TAÁ
Isopropylbenzene ⁿ	142	143	149	149	149	148	141	1.10	150	144
p-Ethvltoluenea	150	144	148	148	145	147	142	130	148	1/3
1.2.4-Trimethylbenzene ^a	150	143	147	147	146	147	IAI	130	148	1/3
1,3,5-Trimethylbenzenea	149 (143)	142	147	147	147	147	140	130	148	143
Ethyl acetate ^a	III (108)	111	114	114	112	108	III	107	100	107
Isopropyl acetate ^a	121	121	124	125	124	123	120	120	124	120
Butyl acetatea	135	137	141	141	130	130	136	133	T.10	125
Isoamvl acetate ^a	I45	149	153	154	150	153	т48	- 55 T.A.A	155	
Diethyl ether	110 (107)	104	104	104	101	101	104	101	+ 5 5 1 0 1	100
Dipropyl ether ^a	131	120	133	134	134	133	128	127	125	120
Diisopropyl ether	IJO	120	132	132	131	132	128	126	133	127
Butyl ethera	IĞO	1.57	165	165	164	163	155	151	166	156
Ethyl butyl ether ^a	130	130	134	137	134	133	128	127	135	120
Argon	44	51	49	49	- 49	47	51	52	- 55	
Nitrogen	42	49	47	47	48	45	40	50	4.4	-+5
Oxygen	40	47	46	46	46	1.1	48	70	.12	43
Carbon monoxide	42	49	48	48	.18	46	50	51	15	44
Carbon dioxide	48	57	50	ร่อ	60	53	57	58	51	52
Methanol	55 (55)	62	65	65	62	53	61	57	52	55
Ethanol	72 (72)	75	80	80	80	70	74	73	60	71
Propanol	83 (86)	áŏ	95	90	05	85		87	85	86
Isopropanola	85 (85)	91		ດົດ	60	86	88	87	85	86
Butanola	95 (99)	103	110	1,10	111	101	101	101	102	101
secButanol ^a	97	103	110	110	100	100	102	100	100	100
tertButanol ^a	96 (96)	103	110	111	111	101	101	101	102	100
3-Methyl-1-butanola	107	115	123	124	121	100	112	108	100	108
Acetone	86 (83)	90	91	91	87	83	90	85	83	84
Methyl ethyl ketone	98 Š	103	105	105	102	ດດັ	102	00	00	00
Diethyl ketone	110	115	118	118	011	117	ΤIJ	- 114	118	115
3.3-Dimethyl-2-butanone"	118	127	129	129	127	127	126	123	128	124
Methyl amyl ketone ^a	133	143	150	150	147	145	141	137	147	140
Methyl hexyl ketone"	147	156	165	166	162	159	154	149	162	154

^a Estimation of critical constants.

^b The numbers 1-9 refer to the collision diameter expressions as given in Table III.

response is indeed a linear function of molecular weight for compounds of a homologous series. In the case of the alkanes, slightly better agreement is obtained when the experimental factors of our study serve as the basis for comparison. The calculated RMR factors of branched compounds are less than the response factors of their corresponding normal isomer. An example of this effect is the isomeric pair 2,2-dimethylbutane and *n*-hexane. Moreover, eqn. 7 can also account for the decrease in response associated with increased molecular symmetry for isomers, *e.g.*, 2-methylhexane, 3-methylhexane, 3-ethylpentane, and 2,2,3-trimethylbutane.

Other trends in response are very adequately predicted as can be observed by a comparison of the computed and experimental factors of 1,3-butadiene with those of the isomeric butenes. In addition, surprisingly good agreement between the two sets of RMR values is achieved for the aromatics, acetates and ethers although their critical constants have been estimated. For the permanent gases studied, the calcu-

TABLE VI

PREDICTED RMR FACTORS WITH HYDROGEN AS CARRIER GAS

Compound	Range of experimental factors ^a		RMR predicted									
			1 ^b	2	3	4	5	6	7	8	9	
	Ref. 5	Ref. 28						•				
Methane	41		44	42	42	43	41	44	45	40	4 I	
Ethane	58		Ġr	Ġo	Ġo	60	59	61	62	58	.59	
Propane	73		77	76	76	76	75	77	77	75	74	
Butane	87		91	91	, 91	10	91	10	91	91	90	
Pentane	104	102	106	107	107	106	107	106	105	107	104	
Hexane	11Ś	123	120	122	122	121	122	120	118	124	115	
Heptane	133	132	134	138	138	136	138	133	131	140	132	
Octane	150	152	148	153	154	151	153	147	143	156	145	
Nonane		185	162	169	169	165	168	160	155	171	158	
Benzene	100	100	100	100	100	100	100	100	100	100	100	
Toluene	112	116	113	115	115	115	115	113	113	115	114	
Cyclohexane	106	105	100	100	100	108	111	100	100	111	109	
Diethyl ether	112	101	103	104	10.1	101	101	103	100	101	99	
Acetone	86	89	gő	gi	91	87	83	89	85	83	84	
Dichloromethane		85	- 91	ģi	91	9 ['] 1	89	91	92	88	- 90 -	
Chloroform		99	101	104	104	107	107	104	107	тоб	107	
Carbon tetrachloride		112	122	121	121	121	122	122	121	122	121	
Carbon disulfide		84	8 t	-80	80	81	So	81	83	79	82	
Methanol	62	59	63	66	66	62	54	62	58	53	56	
Ethanol	75	69	75	80	80	80	70	74	73	69	71	
Propanol			89	95	95	95	85	88	87	85	8 6	
Isopropanol			90	98	99	99	86	88	87	85	86	
Butanol		<u> </u>	103	100	110	110	101	101	100	101	101	
Isobutanol			rož	100	110	110	101	101	100	101	100	
Pentanol			гıб	122	123	123	117	115	114	117	115	
Ethyl acetate		·	111	113	114	111	108	110	107	108	106	

^a Indicates absence of experimental data.

^b The numbers 1-9 refer to the collision diameter expressions as given in Table III.

lated RMR factors are slightly greater than the experimental ones. However, it is quite possible that these deviations may be attributed to techniques by which RMR values of gaseous substances are determined.

Conceding an error of 3% in the experimental measurement of a response factor, the overall agreement can be considered excellently, especially for those compounds whose molecular constants have been estimated. Essentially the accuracy of the predicted factors depends on the accuracy of the molecular constants and the validity of the exponent of the molecular weight term in eqn. 7. An exponent of 1/2 produces slightly better agreement for the permanent gases but a value of 1/4is satisfactory for the overall molecular weight range considered.

PREDICTED RMR DATA WITH HYDROGEN AS CARRIER GAS

Although hydrogen is not ordinarily used as a carrier gas in conjunction with the thermal conductivity detector, a limited amount of RMR data has been reported⁵, ²⁸ and is presented in Table VI together with the computed factors of twenty

......

compounds. The ability of a given collision diameter expression to accommodate both polar and non-polar substances is again demonstrated. In addition, the experimental and calculated RMR data are almost identical with those determined with helium as carrier gas. This agreement can be justified by considering the molecular weight and collision diameters of these gases. Since the molecular weight of both carrier gases is much less than that of most organic compounds, the magnitudes of the molecular weight term in the RMR equation are nearly identical for a particular solute with each carrier gas. Moreover, the collision diameters of helium and hydrogen are approximately equal, as can be seen in Table IV.

CONCLUSIONS

This investigation has determined that the concept of a collision diameter, which is specified in the Lennard-Jones potential function, may be successfully utilized in the calculation of response factors for a typical thermal conductivity detector. Because the diameter expressions are a function of molecular properties, the computed diameters provide a measure of the size of the solute vapor relative to the size of the carrier gas. However, these calculated diameters should not be confused with the concept of a "true" molecular diameter.

The independence of the computed RMR on molecular polarity can be explained by consideration of the environment of the chromatographic solute. In a gas chromatographic analysis, the mole fraction of eluted solute is much less than unity; thus, solute-solute interactions are minimized whereas solute-carrier gas interactions predominate. Consequently, the calculation of diameters for both non-polar and polar compounds by the same expression is justified because the appropriate molecular constants serve as a relative measurement of size. Furthermore, molecular interactions, such as hydrogen bonding and dipole-dipole effects, are essentially absent for polar substances under conventional gas chromatographic conditions.

With nitrogen as carrier gas, our RMR equation failed to predict the experimental data. Response prediction with this carrier gas will be the subject of a later communication.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the services of the University of Rhode Island Computer Center and the support provided by a National Defense Education Act Fellowship.

REFERENCES

- I D. M. ROSIE AND R. L. GROB, Anal. Chem., 29 (1957) 1263.
- 2 A. E. MESSNER, D. M. ROSIE AND P. A. ARGABRIGHT, Anal. Chem., 31 (1959) 230.
- 3 R. S. FISCHER, Thermal Conductivity Cell Response, Master of Science Thesis, University of Rhode Island, 1965.
- 4 L. A. HORROCKS, D. G. CORNWELL AND J. B. BROWN, J. Lipid Res., 2 (1961) 92.
- 5 E. G. HOFFMANN, Anal. Chem., 34 (1962) 1217.

- 6 A. WASSILJEWA, Physik. Z., 5 (1904) 737.
 7 A. B. LITTLEWOOD, Nature, 184 (1959) 1631.
 8 A. B. LITTLEWOOD, Gas Chromatography, Academic Press, New York, London, 1962, p. 306.

- 9 H. LUY, Z. Anal. Chem., 194 (1963) 241.
- 10 R. MECKE AND K. ZIRKER, J. Chromatogr., 7 (1962) 1.
- 11 S. CHAPMAN AND T. G. COWLING, The Mathematical Theory of Non-Uniform Gases, and ed., Cambridge University Press, London, New York, 1952.
- 12 J. O. HIRSCHFELDER, C. F. CURTISS AND R. B. BIRD, Molecular Theory of Gases and Liquids, Wiley, New York, 1954, p. 534.
- 13 J NOVAK, S. WICAR AND J. JANÁK, Coll. Czech. Chem. Commun., 33 (1968) 3642. 14 R. A. SVEHLA, NASA Tech. Rept., R-132, Lewis Research Center, Cleveland, Ohio, 1962.
- 15 Т. ТІТАNІ, Bull. Chem. Soc. Jap., 5 (1930) 98. 16 L. S. TEE, S. GOTOH AND W. E. STEWART, Ind. Eng. Chem. Fundam., 5 (1966) 356.
- 17 L W. FLYNN AND G. THODOS, Amer. Inst. Chem. Eng. J., 8 (1962) 362.
- 18 LANDOLT-BORNSTEIN, Physikalisch-Chemische Tabellen, 5th ed., Springer, Berlin, 1923-1936.
- 19 E. A. MASON AND L. MONCHICK, J. Chem. Phys., 35 (1961) 1676.
 20 N. H. CHEN AND D. F. OTHMER, J. Chem. Eng. Data, 7 (1962) 37.
 21 L. I. STIEL AND G. THODOS, J. Chem. Eng. Data, 1 (1962) 234.

- 22 K. S. PITZER, J. Amer. Chem. Soc., 77 (1955) 3427. 23 K. S. PITZER, D. Z. LIPPMANN, R. F. CARL, C. M. HUGGINS AND D. E. PETERSON, J. Amer. Chem. Soc., 77 (1955) 3433. 24 R. C. REID AND T. K. SHERWOOD, The Properties of Gases and Liquids, 2nd ed., McGraw-Hill,
- New York, 1966, pp. 571-584. 25 A. L. LYDERSEN, Coll. Eng., Univ. Wis. Eng., Exp. Sta. Rept., 3, Madison, Wisc., April, 1955.
- 26 L. RIEDEL, Z. Elektrochem., 53 (1949) 222.
- 27 W. C. EDMISTER, Petrol. Refiner, 37 (1958) 173.
- 28 N. HARA, S. YAMANO, Y. KUMAGAYA, K. IKELBE AND K. NAKAYAMA, Kogyo Kagaku Zasshi, 66 (1963) 1801.